
COP 3330: Java Networking Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Java Networking

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Java Networking Page 2 © Dr. Mark Llewellyn

Java Networking

• Networking is tightly integrated in Java. The Java API

provides the classes for creating sockets to facilitate

program communications over the Internet.

• Sockets are the endpoints of logical connections

between two hosts and can be used to send and receive

data.

• Java treats socket communication similar to the way it

treats I/O operations; thus applications can read from or

write to sockets as easily as they can read from or write

to files.

COP 3330: Java Networking Page 3 © Dr. Mark Llewellyn

Java Networking

• The Internet Protocol (IP) is a low-level protocol for

delivering data from one computer to another across the

Internet in packets. Two higher-level protocols used in

conjunction with IP are the Transmission Control Protocol

(TCP) and the User Datagram Protocol (UDP).

• TCP enables two hosts to establish a connection and

exchange streams of data. TCP guarantees that all packets

sent are delivered in the same order in which they were sent.

• UDP is a low-overhead, connectionless, host-to-host

protocol that allows a datagram to be sent from one host to

another. No connection is established and no guarantees are

offered.

COP 3330: Java Networking Page 4 © Dr. Mark Llewellyn

Java Networking

• Network programming typically involves a server and

one or more clients. The client sends requests to the

server, and the server responds to those requests.

• The client begins by attempting to establish a

connection to the server. The server can accept or deny

the connection. Once a connection is established, the

client and the server communicate through sockets.

COP 3330: Java Networking Page 5 © Dr. Mark Llewellyn

Server Sockets

• To establish a server, you need to create a server socket

and attach it to a port, which is where the server will

listen for connections.

• The port identifies the TCP service on the socket.

• Port numbers range from 0 to 65536 (216), but most OS

reserve port numbers 0 to 1024 for privileged services.

For example, email servers run on port 25, and the Web

server usually runs on port 80.

• You can choose any port number that is not currently

used by any other process.

COP 3330: Java Networking Page 6 © Dr. Mark Llewellyn

Server Sockets

• The following statement creates a server socket named

serverSocket:

ServerSocket serverSocket = new ServerSocket(portNumber);

Example:

ServerSocket server = new ServerSocket(8000);

• Attempting to create a server socket on a port already in

use would cause a java.net.BindException.

COP 3330: Java Networking Page 7 © Dr. Mark Llewellyn

Server Sockets

• Once a server socket is created, the server can use the

following statement to listen for connection attempts:

Socket socket = ServerSocket.accept();

• This statement waits until a client connects to the server

socket. How this is implemented is somewhat system

dependent, in general the server blocks itself until a

connection is attempted at which time the server

unblocks and begins to deal with the connection

attempt.

COP 3330: Java Networking Page 8 © Dr. Mark Llewellyn

Client Sockets

• A client will issue the following statement to request a

connection to a server:

Socket socket = new Socket(serverName, port);

• This statement opens a socket so that the client can begin

communications with the server.

serverName is the server’s Internet host name or IP address.

port is the port number on which the socket is to be created.

• When you create a socket using the host name, the JVM asks the

DNS to translate the host name into an IP address.

• The host name localhost or the IP address 127.0.0.1 refer

to the machine on which a client is running.

COP 3330: Java Networking Page 9 © Dr. Mark Llewellyn

Overview of Client-Server Operations

Server Host

Server socket on port 8000

SeverSocket server =

 new ServerSocket(8000);

A client socket

Socket socket =

 server.accept()

Client Host

Client socket

Socket socket =

 new Socket(host, 8000)

I/O Stream

The server must be running when a client

starts. The server waits for a connection

request from a client. To establish a server,

you need to create a server socket and

attach it to a port, which is where the server

listens for connections.

The client

issues this

statement to

request a

connection to a

server.

After the server accepts the

connection, communication

between server and client is

conducted the same as for I/O

streams.

COP 3330: Java Networking Page 10 © Dr. Mark Llewellyn

Overview of Client-Server Operations

int port = 8000;

DataInputStream in;

DataOutputStream out;

ServerSocket server;

Socket socket;

server =new ServerSocket(port);

socket=server.accept();

in=new DataInputStream

 (socket.getInputStream());

out=new DataOutStream

 (socket.getOutputStream());

System.out.println(in.readDouble());

out.writeDouble(aNumber);

int port = 8000;

String host="localhost"

DataInputStream in;

DataOutputStream out;

Socket socket;

socket=new Socket(host, port);

in=new DataInputStream

 (socket.getInputStream());

out=new DataOutputStream

 (socket.getOutputStream());

out.writeDouble(aNumber);

System.out.println(in.readDouble());

ClientServer

Connection

Request

I/O

Streams

InputStream input = socket.getInputStream();

OutputStream output = socket.getOutputStream();

COP 3330: Java Networking Page 11 © Dr. Mark Llewellyn

An Overview Of Client-Server Operations

• To get an input stream and an output stream, you’ll use the
getInputStream() and getOutputStream()

methods on a socket object (see bottom of previous slide).

• The InputStream and OutputStream streams are used
to read or write bytes.

• You can use the DataInputStream,
DataOutputStream, BufferedReader, and
PrintWriter to wrap the InputStream and
OutputStream to read or write data, such as int, double, or
String.

COP 3330: Java Networking Page 12 © Dr. Mark Llewellyn

An Overview Of Client-Server Operations

• The following statements, for instance, create a
DataInputStream, input, and a
DataOutputStream, output, to read and write primitive
data values:

DataInputStream input =

new DataInputStream(socket.getInputStream());

DataOutputStream output =

new DataOutputStream(socket.getOutputStream());

• The server can use input.readDouble() to receive a
double value from the client, and
output.writeDouble(d) to send double value d to
the client.

COP 3330: Java Networking Page 13 © Dr. Mark Llewellyn

A Client-Server Example

• Let’s develop a complete client/server solution to a problem.

• The client will send data to a server, the server will receive the
data from the client, process the data and then send a result
back to the client. The client will display the results to the
user.

• In this example, the client will send data that represents the
radius of a circle. The server will return to the client the area
of a circle that has that radius.

radius

Server Client

compute area

area

COP 3330: Java Networking Page 14 © Dr. Mark Llewellyn

A Client-Server Example

• The client will send a radius value through a
DataOutputStream on the output stream socket, and the server
will receive the radius through the DataInputStream on the
input stream socket, as shown on the next page.

• The server will compute the area of the circle and send this
result to the client through a DataOutputStream on the output
stream socket, and the client receives the calculated area
through a DataInputStream on the input stream socket as
shown on the next page.

COP 3330: Java Networking Page 15 © Dr. Mark Llewellyn

A Client-Server Example

Server

radius

DataInputStream

socket.getInputStream

socket

Network

Client

radius

DataOutputStream

socket.getOutputStream

socket

(A)

Server

area

DataOutputStream

socket.getOutputStream

socket

Network

Client

area

DataOutputStream

socket.getOutputStream

socket

(B)
Client Sends Request To Server Client Receives Response From Server

COP 3330: Java Networking Page 16 © Dr. Mark Llewellyn

Server.java

COP 3330: Java Networking Page 17 © Dr. Mark Llewellyn

Server.java

(continued)

COP 3330: Java Networking Page 18 © Dr. Mark Llewellyn

Client.java

COP 3330: Java Networking Page 19 © Dr. Mark Llewellyn

Client.java

(continued)

COP 3330: Java Networking Page 20 © Dr. Mark Llewellyn

Client.java

(continued)

COP 3330: Java Networking Page 21 © Dr. Mark Llewellyn

Execution of Client-Server Example

Start server

application

running
1.

Start client

application

running
2.

3. Server accepts

connection

from client

COP 3330: Java Networking Page 22 © Dr. Mark Llewellyn

Execution of Client-Server Example

Enter a radius

in the client

input window

and press the

enter key

4.

Server calculates area of

circle based on radius

received from client and

returns area to client.

5.

Client receives area

calculation from server and

displays the result.

6.

COP 3330: Java Networking Page 23 © Dr. Mark Llewellyn

A Client-Server Example

• The client-server example is set up so that the server will loop forever,
listening for clients attempting to connect. The following page illustrates
multiple instances of client connections.

• I slightly modified the Client.java file to include a line that will print out
the local port number which is automatically assigned by the JVM when the
client connects to the server on port 8000. Note that the client needs to know
the port number the server is listening on and the server needs to know which
client it is talking to.

• The modified code (shown below) is inserted right after the socket object is
created in the client application.

// Create an input stream to receive data from the server

// When the client connects to the server on port 8000, a socket is created dynamically

// on the client side. This socket has its own local port number chosen automatically

// by the JVM. If you want to see what this port number is uncomment the following line.

jta.append("The local port number is: " + socket.getLocalPort() + "\n");

COP 3330: Java Networking Page 24 © Dr. Mark Llewellyn

Execution of Client-Server Example

COP 3330: Java Networking Page 25 © Dr. Mark Llewellyn

The InetAddress Class

• Sometimes, it is desirable for the server to know or identify who
is attempting to connect to it. The InetAddress class is used
to find the client’s host name.

• The InetAddress class models an IP address.

• The statement below creates an instance of InetAddress for
the client on a socket:

InetAddress addr = socket.getInetAddress();

• You can also create an instance of InetAddress from a host
name or IP address using the static getbyName method.

• The example program on the next page identifies the host name
and IP address of the arguments you pas it from the command
line.

COP 3330: Java Networking Page 26 © Dr. Mark Llewellyn

COP 3330: Java Networking Page 27 © Dr. Mark Llewellyn

Serving Multiple Clients Simultaneously

• Multiple clients are quite often connected to a single server at the
same time.

• Typically, a server runs constantly on a dedicated server
computer, and clients from all over the Internet may want to
connect to it.

• This is handled by multithreading the server. A thread is created
for each connection.

while (true) {

Socket socket = serverSocket.accept();

Thread thread = new ThreadClass(socket);

thread.start();

}

COP 3330: Java Networking Page 28 © Dr. Mark Llewellyn

Serving Multiple Clients Simultaneously

• The server socket can have many connections. Each iteration of
the while loop shown on the previous page creates a new
connection.

• Whenever a connection is established, a new thread is created to
handle communication between the server and the new client;
and this allows multiple connections to run simultaneously.

• The diagram on the next page illustrates this concept.

COP 3330: Java Networking Page 29 © Dr. Mark Llewellyn

Serving Multiple Clients Simultaneously

• The example beginning on the next page creates a multithreaded
version of the earlier server example where the server returned
the area of a circle based on the radius supplied by the client.

Server

Client n. . .Client 1

A serve socket

on a port
A socket for a

client

A socket for a

client

COP 3330: Java Networking Page 30 © Dr. Mark Llewellyn

MultithreadServer.java

COP 3330: Java Networking Page 31 © Dr. Mark Llewellyn

MultithreadServer.java

(continued)

COP 3330: Java Networking Page 32 © Dr. Mark Llewellyn

MultithreadServer.java

(continued)

COP 3330: Java Networking Page 33 © Dr. Mark Llewellyn

Execution of MultithreadServer.java

COP 3330: Java Networking Page 34 © Dr. Mark Llewellyn

Retrieving Files From Web Servers

• In the previous examples we developed client-server applications
where we created both the server and the client applications.

• Java allows you to develop clients that retrieve files on a remote
host through a Web server. In this case, you do not create a
custom server. The Web server is used to send the files, as
shown in the diagram below.

Web Server

Local file

Web Browser Applet reads the fileInternet

Application reads the file

COP 3330: Java Networking Page 35 © Dr. Mark Llewellyn

ReadServerFile.java

COP 3330: Java Networking Page 36 © Dr. Mark Llewellyn

ReadServerFile.java

COP 3330: Java Networking Page 37 © Dr. Mark Llewellyn

ReadServerFile.java

(continued)

COP 3330: Java Networking Page 38 © Dr. Mark Llewellyn

ReadServerFileTest.java

(driver class for ReadServerFile.java)

Initial window

COP 3330: Java Networking Page 39 © Dr. Mark Llewellyn

